Tag Archives: Ray Kurzweil

Battery Banter 5: The Relevance (or Not) of Moore’s Law

Concurrently with writing this series of blog posts, I have been reading Steve Levine’s newly published book “The Powerhouse: Inside the Invention of a Battery to Save the World“.  The book is a bit of a mess, full of random jumps, wrong turns and dead ends. Perhaps that is appropriate, since it describes a battery development process that is full of random jumps, wrong turns and dead ends.

While the back cover blurb tells me that the book reads like a thriller, it is more like Sir Arthur Conan Doyle’s tale “The Dog That Didn’t Bark”. We have two questing groups of heroes: the public-sector Argonne National Laboratory battery guys and the plucky private-sector upstarts at Envia Systems. Yet the book peters out at the end, with both teams abjectly failing in their respective quests to find the super battery Holy Grail. Argonne’s new version of nickel manganese cobalt batteries (NMC 2.0) suffers from chronic voltage fade (meaning that the performance of the battery slumps after repeated recharging cycles). Meanwhile, Envia’s super battery is spectacularly flawed, based on a collapsing anode and dodgy intellectual property.

Despite the book being in need of a good edit, it is still full of interesting insights into the battery development process. In a chapter recounting conversations with Don Hillebrand, an old school auto expert working at Argonne, Levine makes this observation:

Unlike microchips, batteries don’t adhere to a principle akin to Moore’s law, the rule of thumb that the number of switches on a chip–semiconductor efficiency–doubles every eighteen months. Batteries were comparatively slow to advance. But that did not make electronics superior to electric cars.

Consumer electronics typically wear out and require replacement every two or three years. They lock up, go on the fritz, and generally degrade. They are fragile when jostled or dropped and are often cheaper to replace than repair. If battery manufacturers and carmakers produced such mediocrity, they would be run out of business, sued for billions and perhaps even go to prison if anything catastrophic occurred. Automobiles have to last at least a decade and start every time. Their performance had to remain roughly the same throughout. They had to be safe while moving–or crashing–at high speed.

At this point, I want to refer you back to the original 1965 article by Gordon Moore that ushered in Moore’s Law entitled  “Cramming more components onto integrated circuits.” From this, we have the quintessential exponential chart, which delivers a straight line if you put the y-axis onto a logarithmic scale (click for larger image):

Moore's Law Paper jpeg

This is the world of Ray Kurzweil‘s singularity which I blogged on in a post a couple of years back called “Singularity or Collapse: Part 1 (For Ever Exponential?“. As knowledge increases by powers of 10, virtually every challenge faced by mankind dissolves. Continue reading

Technology: Singularity or Collapse? (Part 3: Something Going on Around Here)

Apologies for a an absence of blogging for around two months. My father passed away in March, and for some time I couldn’t summon the concentration that blogging requires. The world, however, moves on and we do certainly appear to be living in ‘interesting times’ (the Chinese curse of living in ‘interesting times’ again appears to be something of a myth, but Wikipedia suggests here that it may actually come from the rather wonderful proverb  “It’s better to be a dog in a peaceful time than be a man in a chaotic period”).

The ‘interesting time’ that we are witnessing in Europe is the unstitching of postwar political and economic institutions in the face of austerity. And actually it is not ‘austerity’ per se that is the problem in Europe, but rather a structural lack of growth. A libertarian would argue that this death of growth in Europe is the result of the continent’s over-regulation, excessive taxation and sclerotic labour markets. Unfortunately, this argument appears lacking since the downward trajectory in economic growth seems an OECD phenomenon; for example, while the US is no Italy, it currently appears incapable of growing enough to absorb the natural rate of increase in its labour force, and its GDP is expanding at a far slower rate than in previous decades.

True, global growth as measured by the IMF is still humming along at a handsome pace. If we ignore the 2009 credit crisis aberration, then GDP expansion has recently been above the post-War long term average and is projected to push up above 4% over the next few years (here). However, just as OECD growth appeared to be have been artificially propped by the accumulation of debt in the 2000s, it is an open question as to whether the developing market behemoths of China, India and Brazil have also been binging on mal-investment post the credit crisis to keep their economic miracles on track. As countries as diverse as the Soviet Union and Japan show, this particular type of industrial policy has a tendency to suddenly come up against a brick wall with the passage of time (read Michael Pettis on China for this sort of critique). Continue reading

Technology: Singularity or Collapse? (Part 2: The Ozone Hole)

In my last post, I made the point that techno-optimists, such as Ray Kurweil, see technological change transforming economies through the exponential growth of productivity as the present century progresses. Critically, the analysis of Kurweil and his fellow travellers makes no mention of societal costs—so called externalities in the language of economics. Each innovation or invention is basically self-contained—overcoming a particular problem but without creating any secondary problems in another part of the system.

Unfortunately, this tunnel vision of the benefits of technology does, on many occasions, not correspond to the actual historical record. One technology I have in mind is Thomas Midgley Jr.’s creation of a compound known as chlorofluorocarbon (CFC-12), better know as Freon. CFCs are a classic Kurzweil type solution to a particular problem, in this case the need for a substitute for the highly poisonous gases used up until the 1930s for refrigeration. At the time of their creation and for many years later, CFCs were believed to be inert and totally harmless to human health. In reality, as the CFCs accumulated in the upper atmosphere, they led to the creation of the Antarctic ozone hole. The journalist and author Dianne Dumanoski in her book “The End of the Long Summer” described the ozone hole phenomenon as the most important single event of the 2oth century, even eclipsing Neil Armstrong’s first steps on the moon, since it symbolised “the arrival of a new and ominous epoch when human activity began to disrupt the essential but invisible planetary systems that sustain a dynamic, living Earth.” Even more telling, the environmental historian J.R. McNeill described Midgley himself as having “had more impact on the atmosphere than any other single organism in earth’s history.” Continue reading

Technology: Singularity or Collapse? (Part 1: For Ever Exponential)

In the opening chapter of Ray Kurzweil‘s “The Singularity Is Near” we are presented with the following parable:

A lake owner wants to stay at home to tend to the lake’s fish and make certain that the lake itself will not become covered with lily pads, which are said to double their number every few days. Month after month, he patiently waits, yet only tiny patches of lily pads can be discerned, and they don’t seem to be expanding in any noticeable way. With the lily pads covering less than 1 percent of the lake, the owner figures that it’s safe to take a vacation and leaves with his family. When he returns a few weeks later, he’s shocked to discover that the entire lake has become covered with the pads, and his fish have perished. By doubling their number every few days, the last seven doublings were sufficient to extend the pads’ coverage to the entire lake. (Seven doublings extended their reach 128-fold.) This is the nature of exponential growth.

While ‘the water lily and the lake’ appears a strange choice of metaphor since if nothing else it highlights the importance of boundaries to growth, what Kurzweil was trying to communicate was how technology has barely begun to transform our lives.

By contrast, consider the 1972 report to the Club of Rome published under the title “The Limits to Growth.” Much maligned and mostly misrepresented, The Limits to Growth (LTG) was nothing more than a mathematical analysis of linear and exponential growth rates and ultimate constraints. According to the authors, the tyranny of exponential growth rates would eventually lead population and industrial production to explode, setting off a negative feedback in terms of burgeoning pollution and the eventual exhaustion of food and resources. The report never provided specific dates for the depletion of individual materials, although nine our of ten commentaries on the report claim it did (for a post I did on this particular urban legend, see here). Nonetheless, what the report did do was suggest that the idea of inevitable constant human progress was a dangerous myth. Continue reading