Tag Archives: Elon Musk

Testing Tony Seba’s EV Predictions 15 (Three Nominations for Nobel Prizes)

About a 10 minute walk from my home in Oxford can be found the University of Oxford’s Inorganic Chemistry Laboratory. From my photo below, you can see that the building sports a series of blue plaques commemorating the laboratory’s greatest achievements.

IMG_1360

The bottom one reads as follows:

Here in 1980, John B. Goodenough with Yoichi Mizushima, Philip C. Jones and Philip J. Wiseman identified the cathode material that enabled the development of the rechargeable lithium-ion battery. The breakthrough ushered in the age of portable electronic devices.

Goodenough, now aged 95, is still actively researching battery technology to this day. An affectionate review of Goodenough’s extraordinary career by the journalist Steve LeVine can be found here and an article on a controversial new claim by Goodenough here.

What Goodenough and his team managed to do was create a battery cathode stable enough to act as a source of lithium ions without collapsing in upon itself. This allowed a battery to be charged and discharged, yet hold its energy in-between. The team did this through experimenting with a variety of metal oxides until they came across a lithium-cobalt-oxide combination that provided power with stability. To complement this great leap forward in the cathode, progress was required in the anode, and that came in the mid-1980s through the work of Akira Yoshino in Japan.

LithiumIon

Yoshino’s genius was to match graphite in the anode with Goodenough’s lithium-cobalt-oxide in the cathode. On top of the basic battery chemistry, Yoshino also pioneered a number of fabrication techniques that eventually took the lithium-ion battery out of the laboratory and into commercial production by the Sony Corporation. In short, the Goodenough-Yoshino insights produced a dramatic leap in deliverable power and energy storage.

Lithium-Ion Battery

Although the lithium-ion battery revolution of the 1980s ushered us into a world of ubiquitous mobile electronics, it was initially not sufficient to beget the transport and energy storage revolutions Tony Seba talks about in his presentations. Part of the problem here is that the battery makers face an optimisation problem with 6 variables. They need to look at all of the following:

  1. Safety and maturity on the battery cell level
  2. Power capability and charge/discharge characteristics
  3. Energy contents of the battery cell
  4. Cycling efficiency and self-discharge
  5. Degradation and aging phenomena
  6. Material and battery cell cost

The battery chemistry required is a perpetual trade off between these six. A push for power can compromise safety, and so on it goes. A second problem is that a battery is a multi-component mechanism. You have a cathode, an anode, an electrolyte and a separator. As you tweak the chemistry of one, it will have a tendency to produce unintended consequences in the chemistry of another.

LithiumIonBatterySchematic

Finally, and perhaps most importantly, a battery is not subject to Moore’s Law: it is subject to Faraday’s First Law of Electrolysis. This states that the amount of current passed through an electrode is directly proportional to the amount of material liberated from it. In other words, there is a linear relationship between electrical current and material. You may be able to increase the amount of material liberated from an electrode through using a different kind of material, but what you can’t do is increase the electrical current with the same amount of material.

 

This is a very different relationship from that referenced in Moore’s Law (which is really an empirical observation not a physical law). I blogged on this same topic three years ago (here) and at the time referred to the original 1965 article by Gordon Moore that ushered in Moore’s Law entitled  “Cramming more components onto integrated circuits.”  In the original paper, Moore referred to a doubling of the number of transistors on an integrated circuit board every year, which he later modified to every two years. Either way, the only way you can display that kind of growth on a graph is through using a logarithmic scale as can be seen with what actually happened:

Moore'sLaw

And let’s contrast and compare the Moore’s Law dynamic against battery advances (from here):

BatteryMooresLaw

Nonetheless, you can see that considerable progress has been made. Note that the progression from Goodenough’s lithium-cobalt-oxide combination to a nickel-magnesium-cobolt-oxide combination is an advancement of the same type of chemistry, not a new technological leap. Interestingly, Goodenough himself is rather dismissive of such incremental moves, feeling that they won’t be sufficient to supplant the internal combustion engine. From the Steve LeVine interview:

The stakes are high, and Goodenough dismisses a lot of the competing approaches he sees—Tesla’s Elon Musk, for instance, who he says is content to “sell his cars to rich people in Hollywood” while waiting for scientists to create a battery that will power a middle-class electric car. That is not precisely fair—Musk is obviously selling his $80,000 to $100,000 cars to an elite niche, but by 2018 he vows to have a roughly $35,000 model for a broader slice of the market. He is getting there through agile engineering that has provided incremental improvements to his battery.

But Goodenough is equally dismissive of such tinkering and its measly 7% or 8% a year in added efficiency. “You need something that will give you a little bit of a step,” he says, “not an increment.”

By chance, when I blogged about the state of batteries in March 2015, I came to a similar conclusion (even though I hadn’t read the LeVine article at the time):

Tony Seba, Ray Kurzweil and other assorted techno-cornucopians achieve almost instant doublings by assuming growth rates in the high teens or better. Unfortunately, much science progresses in the low to mid single digits, so change is measured in decades–not years.

The distinction is important. Under the Kurzweil logic, we don’t really need to tackle climate change or resource depletion because technology is on the case. Just go about your business as usual, tuck up your kids in bed at night, and scientific innovation will do the rest.

But unless Argonne Laboratory‘s battery guys and their peers step up the pace (which looks exceedingly difficult), electric vehicles will not replace conventional internal combustion engines for a couple of decades or more. That translates into no natural near-term carbon emission mitigation in the field of motor transport. And unless we get very lucky with climate sensitivity to CO2, that also means we will get a lot closer to exceedingly dangerous climate change.

It now appears that I (and Goodenough) could have been wrong: “such tinkering” has managed to deliver double-digit efficiency gains. These gains have, in turn, allowed Telsa to start tipping the market toward EVs at the luxury end with the Model S. And Elon Musk now appears to be doing the same with respect to more compact cars with the Model 3.

If Tesla keeps going into more and more segments (and drags the entire auto industry along with it), then through mitigating (but perhaps not eliminating) the risk of dangerous climate change, Musk, along with Goodenough and Yoshino, will have had more impact on the planet than any human being who has ever lived. We define the Anthropocene as the geological period over which human activity has had an appreciable impact on the environment and climate. Should Tony Seba’s transport and energy revolutions come to pass, it is extraordinary to think that the actions of Goodenough-Yoshino-Musk will have shaped how the Anthropocene unfolds.

I believe that Goodenough and Yoshino certainly deserve to be awarded the Nobel prize for chemistry. Further, should battery efficiency continue to progress at its current pace such that fossil fuels are removed from the transport and energy storage equation, then the role of all three in preventing dangerous climate change will have been immense. Indeed, I can’t think of any three more fitting recipients of the Nobel Peace Prize in such a situation.

Nonetheless, I have got a little ahead of myself in handing out Nobel prizes. While I am far more confident than three years ago that we are close to an EV tipping point, we are not quite there yet. So in my next post we need to dig still deeper into battery efficiency and cost to see whether battery technology can advance just that little bit further to push ICE technology to one side.

For those of you coming to this series of posts midway, here is a link to the beginning of the series.

 

Testing Tony Seba’s EV Predictions 9 (And Then There Was Tesla)

Not bad! I’ve reached number nine in my series of posts on Electric Vehicles (EVs) and haven’t done a post yet concentrating on Tesla. There are two main reasons for this. First, so much has been written about Tesla, and so many opinions are publicly available on the web about Tesla, that I am not sure I can add much.

Second, this is a series of blog posts looking at the question of whether EV penetration can realistically get to 95% in 2030, which roughly equates to around 130 million vehicles. Even if Tesla becomes the most successful auto company ever–or even if it becomes the most successful auto company ever multiplied by a factor of two–it alone cannot get even close to that target of 130 million EV sales. Let us say that in 2030 Tesla has the combined market share that Volkswagen and Toyota have today (the top two in terms of global autos sales market share). That combined VW-Toyota percentage share of the market now would equate to Tesla selling about 30 million cars in 2030. Pretty bloody good (if it ever happens), but it will not get us even close to 130 million EVs. For that to happen we need the collective heft of the rest of the global auto players.

Nonetheless, in our S-curve analysis we started by looking out 5 years, since battery plant and auto lines need to be financed and designed now in order for cars to roll off out in sufficient quantity in 2023. So let’s recycle this chart again:

EVSalesto2023

 

In my post on China’s New Energy Vehicle (NEV) strategy, I surmised that it would be relatively easy for China to hit its target of having 5 million NEVs (made up almost entirely of EVs rather than fuel-cell vehicles) on the road by 2020. That would see Chinese consumers buying around two million EV vehicles that year. My next question is whether Tesla, as the current world’s largest seller of EVs, could supply a large chunk of the other 3.6 million EVs needed in 2020 to stay on Tony Seba’s S curve. My answer to that is “possibly”. Here’s how.

First, Tesla will have enough batteries. From the press release accompanying their January 2017 investor event relating to their factory in Nevada:

“Gigafactory 1 (GF1): GF1 is the world’s leading battery production facility, maintaining high efficiency and output while achieving the lowest capital investment per gigawatt hour (GWh) and the lowest production cost per kilowatt hour (kWh).

The factory will produce cells, battery packs, energy storage products and vehicle components. Phase 2 construction, currently underway, will support annualized cell production capacity of 35 GWh and battery pack production of 50 GWh. The cell capacity represents more than the 2013 total global production of lithium-ion battery cells of all other manufacturers combined and supports the production of about 500,000 cars.”

So in January 2017, battery plant capacity was already being put in place to fit out 500,000 EVs. By 2020, that number will be a lot higher.

Tesla delivered 101,312 Model S and Model X  vehicles in 2017, and Elon Musk has stated his intention to produce 10,000 of the mid-market Model 3 a week by the end of 2018. The press has been rife with stories over how Tesla has been missing its production targets in 2018 for the Model 3, but in April Elon Musk tweeted that production was now exceeding 2,000 per week, which is on top of another 2,000 Model S and Model X vehicles. He then went on to say that they should be producing 5,000 a week of the Model 3 by end June with a stretch goal of 6,000. If we take the 5,000 number add 2,000 Model S plus Model X’s and multiply by 50 we get 350,000 EV sales annualised.

So far, this entire series of blog posts have been dedicated to the supply side; in short, the question of whether the auto manufacturers have put, or will put, enough plant in place to physically build the necessary number of EVs for us to move up Tony Seba’s S curve of EV market penetration versus internal combustion engine (ICE) vehicles. I have said nothing about whether consumers will want to buy a ton of EV cars. In Tesla’s case, however, the demand side is already in the bag for a couple of years since the company has 450,000 reservation deposits for the Model 3 as reported in Tesla’s Q1 2018 results update letter released on 2 May 2018. This really is a case of “build it and they will come”. Moreover, for those who don’t believe that EVs can go mass market look at this chart contained in the same release by Tesla:

MidSizeSedanMarketShare.

Given Tesla will be on an annualised run rate of 350,000 cars by end of June, it looks entirely feasible that this figure will improve to 500,000 by year-end. Then, with the gigafactory in Nevada being scaled up again and more new models to be released over the next two years, it looks likely that Tesla alone could do a third of the 3.6 million vehicle sales needed outside of China to stay on Tony Seba’s S curve through to 2020.

The situation beyond 2020 will be the subject of a separate post, but I want to finish this post by introducing a video by Jack Rickard, an electric car expert, explaining why he thinks Tesla will continue to go from strength to strength. Rickard looks like a Hollywood caricature of an elderly battery nerd, and I will come back to one of his videos where he deconstructs a Tesla battery in a future post.

What I like about Rickard, however, is that he obviously never picked up the book “How to Give a Ted Talk” or, for that matter, any self-help book on presentation style or image branding at an airport book stand. From looking at some of his videos, I have drawn up a Jack Rickard guide to giving a presentation:

  1. Never go to the gym in an attempt to stay in shape: life is too short for such a colossal waste of time.
  2. Dress like you don’t give a shit, because you don’t give a shit.
  3. On the day of your presentation, don’t change your grooming routine since you don’t have one.
  4. When deciding on the length of your presentation, first think of the likely average attention span of your audience. Second, quadruple that number and add a bit more.
  5. Go off at random tangents at great length.
  6. Don’t talk to the camera. Look down a lot and mumble.
  7. Write down your presentation on multiple pieces of paper, then laboriously talk to each page.
  8. Fancy infographics and the like are for morons.
  9. You know your IQ is a lot higher than the vast majority of your audience: communicate that fact to them. Don’t patronise them by letting them think they are cleverer than they really are.
  10. Realise that you can get away with one through nine only because you really, really know your subject.

So here is Jack Rickard spending one hour 50 minutes explaining why Tesla is revolutionising the auto industry, why its competitors are unable to respond and why Tesla’s stock is a screaming “buy”. Enjoy:

 

 

For those of you coming to this series of posts midway, here is a link to the beginning of the series.